5,542,078

1

OBJECT ORIENTED DATA STORE
INTEGRATION ENVIRONMENT FOR
INTEGRATION OF OBJECT ORIENTED
DATABASES AND NON-OBJECT ORIENTED
DATA FACILITIES

FIELD OF THE INVENTION

The present invention relates to computer databases, and
more particularly to integration of object oriented databases
and non-object oriented data facilities.

BACKGROUND OF THE INVENTION

Various means and methodologies exist presently for
persisient storage of data for use in computer system appli-
cations. Known database management systems (DBMS’s)
facilitate storage of data in non-volatile storage, e.g. disks,
tapes, etc, for use even after the program that used or
generated the data is terminated (“persisience”). In addition
to persistence, DBMS’s fundamentally provide “concur-
rency control” so users of data can share a database without
interfering with each other or compromising the integrity of
data, and “recovery” features to protect and restorc data
integrity upon system (hardware or sofiware) failures.
DBMS “query” facilitics enable users to access the large
volumes of data within a database by specifying some
particular characteristic or field within data records, while
“sccurity” features are typically built into DBMS’s to limit
access to some data. Known DBMS’s support “schema
management” for describing propertics of, and relationships
between, data in a database.

With the evolution of DBMS technology, fundamental
functionality as described hercinbefore has been maintained
and expanded while data complexity and processing perfor-
mance requirements have increased. A type of data manage-
ment technology applied in commercial data processing
known as “relational” DBMS, is modeled to be relatively
simplistic in that all data is organized as though it is
formatted into tables, with the table columns representing
the table’s fields or domains and the table rows representing
the values of the table’s fields or domains. Data is logically
organized as tables but is not necessarily physically stored as
such. The relational database user does not need to know
how the database is physically constructed and can access
and update data via a language interface or “structured query
language” (SQL).

The relative complexity of data associated with science
and engincering problem solving, and the evolution of
complex data structures and data entities modcled on real-
world objects led to the development of a new generation of
DBM’s known as “object DBM’s” (ODBM’s) or “object
oriented DBM’s” (OODBM’s). ODBM’s do not conform to
the relational model but provide virtually the same funda-
mental functionality (i.e. persistence, concurrency conirol,
rceovery, security, query facilities and schema management)
for storing and manipulating object entities. Object entities
or “objects”, are complex data structures which model
rcal-world entities, and are associated in classes and iden-
tified with their informational features (attributes) and func-
tional features (behaviors). Objects are effected using object
oriented programming (OOP) languages such as C++ and
Smalltalk, By defining complex, specialized data structures
or objects that model real-world entities, program develop-
ment is made easier and more natural as the level of
abstraction of data is raised 10 a point where applications can

10

15

35

40

45

50

55

60

65

2

be implemented effectively in the same terms in which they
are described by the users of the application. Objects are
more readily classifiable into types, which are easily related
to one another in subtype/supertype hierarchies. OOP lan-
guages permit the programmer to flexibly define data types
$0 as not to be constrained by limited predefined types. OOP
language types can be associated in classes which can
“inherit” attributes and/or behaviors from other classes.
Complex object data structures and types are not supported
by the relational DBMS model, but by ODBM’s which
facilitate direct storage and manipulation of objects, without
the need to map them into tables.

Relational DBM’s and Object DBM’s co-exist presently,
with little likelihood that one will completely displace the
other. Each type of DBMS (i.e. Relational and Object) is
best suited for respective particular applications, e.g. Rela-
tional for the predefined data types of business data pro-
cessing such as in the insurance and banking industries; and
Object for the extensible data structures modeled on real-
world entities such as used in computer-aided design and
computer-aided software engineering. However, with the
considerable investment associated with existing relational
data stores, and the continuing evolution toward and appre-
ciation for object applications, there exists a need for inte-
grating object and relational technologies.

The need for integration of relational and object data
typically will arise in situations where new object oriented
applications are implemented to take advantage of aspects of
object oriented programming in a context where data wasf/is
managed according to the relational model. Known means
of integrating object programming with a relational database
include doing a manual, programming intensive conversion
of all the relational data in the relational DBMS to object
data, that is readily accessible to the object oriented pro-
grams. However, in addition to the significant efforts
required for such conversion, there typically are non-object
oriented application programs that continue to require access
to the relational data. Thus, disadvantageously, it may be
necessary to have redundant data stores resulting in dupli-
cative resources and greater overhead. Additionally the task
of updating and maintaining the Relational and Object
versions of the DBMS creates difficulties in that updates
must be substantially simultaneously coordinated and may
have to be replicated in disparate environments. Even if the
entire collection of existing programs that access the rela-
tional database are rewritten in an object oriented program-
ming language, such a mode of conversion is an expensive,
complicated and time consuming endeavor.

Standardized import/export facilities are known which
permit importation of data in a predictable input format into
an object database. The import/export facility is a program,
implementation of which requires knowledge of the schema
or format of the relational data. Additionally, the relational
data elements must be mapped to objects within an ODBMS
which are to be managed by the ODBMS which conse-
quently manages the mapped relational data elements. Such
facilities, however, lack flexibility in that a predefined
format is required for representing data that is to be passed
between relational and object environments. While the
import/export facility effectively acts as a translation mecha-
nism, there must be rigid adherence to the predefined format
in which the relational data is maintained, otherwise it
cannot be mapped to objects and managed by the ODBMS.

Translation techniques in the form of SQL Gateways are
known which allow object language programs to retrieve
relational data from a relational database in a form approxi-
mating objects rather than tables. A programmer must know

